Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Plants (Basel) ; 11(12)2022 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-35736736

RESUMO

WRKY transcription factors play critical roles in plant growth and development or stress responses. Using up-to-date genomic data, a total of 64 and 257 WRKY genes have been identified in the diploid woodland strawberry, Fragaria vesca, and the more complex allo-octoploid commercial strawberry, Fragaria × ananassa cv. Camarosa, respectively. The completeness of the new genomes and annotations has enabled us to perform a more detailed evolutionary and functional study of the strawberry WRKY family members, particularly in the case of the cultivated hybrid, in which homoeologous and paralogous FaWRKY genes have been characterized. Analysis of the available expression profiles has revealed that many strawberry WRKY genes show preferential or tissue-specific expression. Furthermore, significant differential expression of several FaWRKY genes has been clearly detected in fruit receptacles and achenes during the ripening process and pathogen challenged, supporting a precise functional role of these strawberry genes in such processes. Further, an extensive analysis of predicted development, stress and hormone-responsive cis-acting elements in the strawberry WRKY family is shown. Our results provide a deeper and more comprehensive knowledge of the WRKY gene family in strawberry.

2.
Plants (Basel) ; 11(1)2021 Dec 25.
Artigo em Inglês | MEDLINE | ID: mdl-35009061

RESUMO

Under climate change, the spread of pests and pathogens into new environments has a dramatic effect on crop protection control. Strawberry (Fragaria spp.) is one the most profitable crops of the Rosaceae family worldwide, but more than 50 different genera of pathogens affect this species. Therefore, accelerating the improvement of fruit quality and pathogen resistance in strawberry represents an important objective for breeding and reducing the usage of pesticides. New genome sequencing data and bioinformatics tools has provided important resources to expand the use of synthetic biology-assisted intragenesis strategies as a powerful tool to accelerate genetic gains in strawberry. In this paper, we took advantage of these innovative approaches to create four RNAi intragenic silencing cassettes by combining specific strawberry new promoters and pathogen defense-related candidate DNA sequences to increase strawberry fruit quality and resistance by silencing their corresponding endogenous genes, mainly during fruit ripening stages, thus avoiding any unwanted effect on plant growth and development. Using a fruit transient assay, GUS expression was detected by the two synthetic FvAAT2 and FvDOF2 promoters, both by histochemical assay and qPCR analysis of GUS transcript levels, thus ensuring the ability of the same to drive the expression of the silencing cassettes in this strawberry tissue. The approaches described here represent valuable new tools for the rapid development of improved strawberry lines.

3.
Front Plant Sci ; 10: 480, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31057583

RESUMO

Strawberry (Fragaria ×ananassa) is a major food crop worldwide, due to the flavor, aroma and health benefits of the fruit, but its productivity and quality are seriously limited by a large variety of phytopathogens, including Colletotrichum spp. So far, key factors regulating strawberry immune response remain unknown. The FaWRKY1 gene has been previously proposed as an important element mediating defense responses in strawberry to Colletotrichum acutatum. To get further insight into the functional role that FaWRKY1 plays in the defense mechanism, Agrobacterium-mediated transient transformation was used both to silence and overexpress the FaWRKY1 gene in strawberry fruits (Fragaria ×ananassa cv. Primoris), which were later analyzed upon C. acutatum inoculation. Susceptibility tests were performed after pathogen infection comparing the severity of disease between the two agroinfiltrated opposite halves of the same fruit, one half bearing a construct either for FaWRKY1 overexpression or RNAi-mediated silencing and the other half bearing the empty vector, as control. The severity of tissue damage was monitored and found to be visibly reduced at five days after pathogen inoculation in the fruit half where FaWRKY1 was transiently silenced compared to that of the opposite control half and statistical analysis corroborated a significant reduction in disease susceptibility. Contrarily, a similar level of susceptibility was found when FaWRKY1 overexpression and control fruit samples, was compared. These results unravel a negative regulatory role of FaWRKY1 in resistance to the phytopathogenic fungus C. acutatum in strawberry fruit and contrast with the previous role described for this gene in Arabidopsis as positive regulator of resistance against the bacteria Pseudomonas syringae. Based on previous results, a tentative working model for WRKY75 like genes after pathogen infection is proposed and the expression pattern of potential downstream FaWRKY1 target genes was also analyzed in strawberry fruit upon C. acutatum infection. Our results highlight that FaWRKY1 might display different function according to species, plant tissue and/or type of pathogen and underline the intricate FaWRKY1 responsive defense regulatory mechanism taking place in strawberry against this important crop pathogen.

4.
Sci Rep ; 9(1): 4942, 2019 03 20.
Artigo em Inglês | MEDLINE | ID: mdl-30894615

RESUMO

The plant VQ motif-containing proteins are a recently discovered class of plant regulatory proteins interacting with WRKY transcription factors capable of modulate their activity as transcriptional regulators. The short VQ motif (FxxhVQxhTG) is the main element in the WRKY-VQ interaction, whereas a newly identified variable upstream amino acid motif appears to be determinant for the WRKY specificity. The VQ family has been studied in several species and seems to play important roles in a variety of biological processes, including response to biotic and abiotic stresses. Here, we present a systematic study of the VQ family in both diploid (Fragaria vesca) and octoploid (Fragaria x ananassa) strawberry species. Thus, twenty-five VQ-encoding genes were identified and twenty-three were further confirmed by gene expression analysis in different tissues and fruit ripening stages. Their expression profiles were also studied in F. ananassa fruits affected by anthracnose, caused by the ascomycete fungus Colletotrichum, a major pathogen of strawberry, and in response to the phytohormones salicylic acid and methyl-jasmonate, which are well established as central stress signals to regulate defence responses to pathogens. This comprehensive analysis sheds light for a better understanding of putative implications of members of the VQ family in the defence mechanisms against this major pathogen in strawberry.


Assuntos
Colletotrichum/patogenicidade , Resistência à Doença/genética , Fragaria/genética , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas/metabolismo , Acetatos/metabolismo , Motivos de Aminoácidos , Ciclopentanos/metabolismo , Diploide , Fragaria/metabolismo , Fragaria/microbiologia , Frutas/microbiologia , Perfilação da Expressão Gênica , Interações Hospedeiro-Patógeno/genética , Oxilipinas/metabolismo , Filogenia , Reguladores de Crescimento de Plantas/metabolismo , Poliploidia , Ácido Salicílico/metabolismo , Fatores de Transcrição/metabolismo
5.
Plant Cell Environ ; 37(9): 2139-50, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-24548141

RESUMO

The Chlamydomonas reinhardtii NIT2 gene plays a central role in nitrate assimilation, thus, nit2 mutants are not able to sense or to use nitrate for growth. NIT2 protein is an RWP-RK-type transcriptional factor related to nodule inception (Nin, NLP) proteins from plants. NIT2 expression is down-regulated in ammonium and up-regulated under nitrogen deprivation. However, intracellular nitrate is required to activate NIT2 for subsequent expression of NIA1 and other nitrate assimilation genes. In this work, mutants defective in nitrate sensing have been studied. The identification of genomic regions affected allows proposing putative loci/genes for nitrate signalling in the alga. Among them, a CrNZF1 (Nitrate Zinc Finger 1) that encodes a tandem zinc finger protein CCCH-type. In the nzf1 mutant, the expression of the regulatory gene NIT2 is decreased and also that of nitrate assimilation genes. In this mutant, polyadenylated forms of NIT2 with different lengths could be detected, whereas in the wild type there appeared preferentially the longest forms. CrNZF1 is proposed to regulate NIT2 polyadenylation and thus nitrate signalling and nitrate-dependent growth in the alga.


Assuntos
Chlamydomonas/genética , Genes Reguladores , Nitratos/metabolismo , Proteínas de Plantas/genética , Sequências Repetitivas de Aminoácidos , Transdução de Sinais , Dedos de Zinco , Sequência de Aminoácidos , Regulação da Expressão Gênica de Plantas , Teste de Complementação Genética , Genoma de Planta/genética , Dados de Sequência Molecular , Mutação/genética , Proteínas de Plantas/química , Proteínas de Plantas/metabolismo , Poliadenilação , Regiões Promotoras Genéticas/genética , Transdução de Sinais/genética , Transformação Genética
6.
Eukaryot Cell ; 6(6): 1063-7, 2007 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-17416894

RESUMO

We have isolated and characterized the Chlamydomonas reinhardtii genes for molybdenum cofactor biosynthesis, namely, CNX1G and CNX1E, and expressed them and their chimeric fusions in Chlamydomonas and Escherichia coli. In all cases, the wild-type phenotype was restored in individual mutants as well as in a CNX1G CNX1E double mutant. Therefore, CrCNX1E is the first eukaryotic protein able to complement an E. coli moeA mutant.


Assuntos
Proteínas de Algas/metabolismo , Chlamydomonas reinhardtii/metabolismo , Coenzimas/biossíntese , Escherichia coli , Metaloproteínas/biossíntese , Proteínas de Protozoários/metabolismo , Proteínas de Algas/classificação , Proteínas de Algas/genética , Animais , Chlamydomonas reinhardtii/genética , Escherichia coli/genética , Escherichia coli/metabolismo , Teste de Complementação Genética , Dados de Sequência Molecular , Cofatores de Molibdênio , Proteínas Nucleares/classificação , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Filogenia , Proteínas de Protozoários/classificação , Proteínas de Protozoários/genética , Pteridinas , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo
7.
Plant Physiol ; 137(2): 522-33, 2005 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-15665251

RESUMO

The existence of mutants at specific steps in a pathway is a valuable tool of functional genomics in an organism. Heterologous integration occurring during transformation with a selectable marker in Chlamydomonas (Chlamydomonas reinhardtii) has been used to generate an ordered mutant library. A strain, having a chimeric construct (pNia1::arylsulfatase gene) as a sensor of the Nia1 gene promoter activity, was transformed with a plasmid bearing the paramomycin resistance AphVIII gene to generate insertional mutants defective at regulatory steps of the nitrate assimilation pathway. Twenty-two thousand transformants were obtained and maintained in pools of 96 for further use. The mutant library was screened for the following phenotypes: insensitivity to the negative signal of ammonium, insensitivity to the positive signal of nitrate, overexpression in nitrate, and inability to use nitrate. Analyses of mutants showed that (1) the number or integrated copies of the gene marker is close to 1; (2) the probability of cloning the DNA region at the marker insertion site is high (76%); (3) insertions occur randomly; and (4) integrations at different positions and orientations of the same genomic region appeared in at least three cases. Some of the mutants analyzed were found to be affected at putative new genes related to regulatory functions, such as guanylate cyclase, protein kinase, peptidyl-prolyl isomerase, or DNA binding. The Chlamydomonas mutant library constructed would also be valuable to identify any other gene with a screenable phenotype.


Assuntos
Chlamydomonas reinhardtii/genética , Chlamydomonas reinhardtii/metabolismo , Regulação da Expressão Gênica/fisiologia , Nitratos/metabolismo , Amônia/metabolismo , Animais , Perfilação da Expressão Gênica , Mutagênese Insercional , Fenótipo , Ureia/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...